skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Juan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In seed plants, the canonical role of 1-aminocyclopropane-1-carboxylic acid (ACC) is to serve as the precursor in the biosynthesis of the phytohormone ethylene, and indeed, ACC treatment is often used as a proxy for ethylene treatment. Increasing evidence suggests that ACC can also act independently of ethylene to regulate various aspects of plant growth and development. Here, we explore the effects of ACC onArabidopsis thalianaroot growth and the mechanisms by which it acts. ACC inhibits growth of the primary root inArabidopsisseedlings when ethylene signaling is blocked, which becomes evident after 36 h of treatment with ACC. This reduced root growth is in part the result of suppressed cell proliferation in the root meristem resulting from altered expression of a key regulator of stem cell niche activity, WOX5. ACC also promotes lateral root (LR) development, in contrast to ethylene, which inhibits LR formation. Transcriptomic analysis of roots revealed no significant changes in gene expression after 45 min or 4 h of ACC treatment, but longer treatment times revealed a large number of differentially expressed genes, including the downregulation of the expression of a small group of phylogenetically related CLE peptides. Reduced expression of these group 1 CLEs in response to ACC leads to the activation of a transcription factor, LBD18, which promotes LR development. These results suggest that ACC acts to modulate multiple aspects ofArabidopsisroot growth independently of ethylene via distinct transcriptional effects in the root meristem and LR precursor cells. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026